skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dominguez, Owen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This work presents a novel approach to achieve directional and normal thermal emission from epsilon‐near–zero (ENZ) materials. ENZ materials exhibit near–zero permittivity at the ENZ point, resulting in some unique properties compared to conventional optical materials including infinite wavelength, constant phase distribution, and decoupling of spatial and temporal fields inside the ENZ material. These properties are used to engineer the far‐field thermal emission from optical antennas fabricated on ENZ film in the mid‐infrared. By coupling the antenna resonance mode with the Berreman mode of the ENZ material, highly directional and normal emission is demonstrated. This approach could have significant implications for thermal management, energy conversion, and sensing applications. 
    more » « less